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Weakly nonlinear shear waves
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Alongshore propagating low-frequency O(0.01 Hz) waves related to the direction and
intensity of the alongshore current were first observed in the surf zone by Oltman-
Shay, Howd & Birkemeier (1989). Based on a linear stability analysis, Bowen &
Holman (1989) demonstrated that a shear instability of the alongshore current gives
rise to alongshore propagating shear (vorticity) waves. The fully nonlinear dynamics of
finite-amplitude shear waves, investigated numerically by Allen, Newberger & Holman
(1996), depend on α, the non-dimensional ratio of frictional to nonlinear terms,
essentially an inverse Reynolds number. A wide range of shear wave environments
are reported as a function of α, from equilibrated waves at larger α to fully turbulent
flow at smaller α. When α is above the critical level αc, the system is stable. In this
paper, a weakly nonlinear theory, applicable to α just below αc, is developed. The
amplitude of the instability is governed by a complex Ginzburg–Landau equation. For
the same beach slope and base-state alongshore current used in Allen et al. (1996),
an equilibrated shear wave is found analytically. The finite-amplitude behaviour of
the analytic shear wave, including a forced second-harmonic correction to the mean
alongshore current, and amplitude dispersion, agree well with the numerical results of
Allen et al. (1996). Limitations in their numerical model prevent the development of
a side-band instability. The stability of the equilibrated shear wave is demonstrated
analytically. The analytical results confirm that the Allen et al. (1996) model correctly
reproduces many important features of weakly nonlinear shear waves.

1. Introduction
Low-frequency approximately non-dispersive alongshore propagating waves with

periods of O(100 s) and wavelengths of O(100 m) were first observed on a barred
beach by Oltman-Shay, Howd & Birkemeier (1989). The wavelengths of these mo-
tions are much shorter than the wavelengths of edge waves of the same frequency,
and are related to the intensity and direction of the mean alongshore current. In
a companion paper, Bowen & Holman (1989) used linear stability theory, an ideal-
ized topography, and an idealized alongshore current to demonstrate that a shear
instability of the alongshore current leads to growing, nearly non-dispersive shear
waves propagating in the direction of the alongshore current. Dodd, Oltman-Shay
& Thornton (1992) included a linearized bottom stress, realistic barred-beach profile,
and alongshore currents, and found good agreement between wavelengths and fre-
quencies of the most unstable linear mode and the energetic regions of the observed
frequency–wavenumber spectra of velocity. However, neither linear stability analyses
nor frequency–wavenumber spectra address the finite-amplitude behaviour of shear
waves.

The finite-amplitude behaviour of shear waves was investigated numerically by
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Allen, Newberger & Holman (1996, hereafter ANH96). Using the rigid-lid shallow-
water equations on a planar beach with an idealized alongshore forcing and a
linearized bottom stress, ANH96 found that the nonlinearity of the flow can be
characterized by a non-dimensional parameter α (Q in ANH96), the ratio of frictional
to nonlinear terms, essentially an inverse Reynolds number. For values of α below the
critical value for an instability αc, a wide range of behaviour is reported, ranging from
steady equilibrated waves at larger values of α to irregular eddies and transient rips
at smaller values of α. In ANH96, shear wave energy propagates non-dispersively for
all values of α. It is not known whether natural shear wave environments are similar
to those at larger or smaller α reported by ANH96.

ANH96 did not study the near critical (i.e. at α just below αc) behaviour of shear
waves. An issue complicating such study is that numerical effects can alter the near
critical behaviour. For example, Hyman, Nicolaenko & Zaleski (1986) found that
inadequate numerical accuracy could induce a false stability in simulations of the
Kuramoto–Sivashinsky equation. In the ANH96 model, finite numerical resolution
and biharmonic friction (added for numerical stability) might significantly distort the
solutions near αc. Note also that finite alongshore domain lengths prevent potential
side-band instabilities and motions on scales longer than the domain length from
developing.

In this paper analytic shear wave solutions are found for near critical conditions
when the departure from stability, given by ε

ε2 =
αc − α
αc

, (1.1)

is small that largely confirm the results of ANH96. Preliminary work on the finite-
amplitude weakly nonlinear theory has been reported by Dodd & Thornton (1992).
Recently Shrira, Voronovich & Kozhelupova (1997) demonstrated that, for weak
bottom friction (α � 1), resonant triads composed of growing waves experience an
explosive instability. Here we follow the approach of Stewartson & Stuart (1971), who
solved for the finite-amplitude behaviour of instabilities of plane Poiseulle flow. An
equation for the perturbation potential vorticity is derived in terms of the perturbation
streamfunction ψ, and expanded in powers of ε. At O(ε) (e.g. Bowen & Holman 1989;
Dodd et al. 1992), the eigenvalue problem for ψ at a particular α and alongshore
wavenumber k yields growing or decaying alongshore propagating wave solutions for
the streamfunction. There is a critical pair (αc, kc) such that one eigenvalue has zero
imaginary component whose eigenfunction is a neutrally stable wave, and the rest
have negative imaginary components whose eigenfunctions are decaying solutions.
The frequency of the neutrally stable mode is by definition the primary frequency. At
O(ε2) phenomena typical of weakly nonlinear waves are found: a correction to the
mean flow and a forced wave (second harmonic) at twice the primary frequency and
wavenumber. At O(ε3) the complex Ginzburg–Landau equation for the amplitude of
the disturbance is derived. This equation has solutions that can exhibit a wide variety
of behaviour ranging from a simple steady wave to chaotic solutions (Manneville
1990). For the same choice of beach slope and alongshore forcing as ANH96, the real
part of the Landau coefficient is negative, indicating that the instability is supercritical
and that equilibrated finite-amplitude solutions are possible at O(ε3). Time-periodic
solutions for the amplitude of the disturbance are side-band stable, and amplitude
dispersion, a frequency shift of the equilibrated wave related to ε, is found.

Analytic solutions are compared to numerical solutions using the model of ANH96
at α near αc. Equilibrated finite-amplitude waves are found in the ANH96 solutions,
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and exhibit characteristic features of weakly nonlinear systems, such as spectral peaks
at integer frequencies of the primary frequency and amplitude dispersion. Numerical
effects that affect the near critical behaviour of the shear instability also complicate
comparison with the analytic model, particularly since αc for the ANH96 model
is different from the analytic model. Nevertheless, the cross-shore structures of the
ANH96 model primary wave, the second harmonic, and the mean flow correction are
in excellent agreement with theory. Although differences in the αc and therefore the
ε of the two models prevent quantitative comparison of shear wave amplitudes, the
ANH96 model shear wave amplitudes and amplitude dispersion are in reasonable
agreement with the analytic model. The overall level of agreement between the
analytic and ANH96 model verifies that the ANH96 model correctly reproduces the
qualitative behaviour of weakly nonlinear shear waves.

The remainder of this paper is organized as follows. The weakly nonlinear theory for
a planar beach and arbitrary background alongshore current is developed in §2. The
numerical method and solutions for the finite-amplitude shear waves are described
in §3. Comparisons to ANH96 are given in §4. Section 5 contains a discussion and
conclusions.

2. Theory
Including forcing and linear bottom friction, the rigid-lid shallow water equations

(continuity, cross- and alongshore momentum) representing the depth- and time-
averaged flow in the nearshore are

(hu)x + (hv)y = 0, (2.1a)

ut + uux + vuy = −gηx − νu/h, (2.1b)

vt + uvx + vvy = −gηy + F − νv/h, (2.1c)

where x and y are the cross- and alongshore coordinates respectively (figure 1), u
and v are the cross- and alongshore velocities, η is the sea surface elevation, ν is a
constant friction coefficient, and g represents gravity. This system of equations (2.1)
is the same as in ANH96 except that biharmonic friction terms included in ANH96
to dampen numerical instabilities are not required here. The bathymetry contours are
planar (h(x) = βx) and the shoreline is at x = 0. Following ANH96, the forcing F(x)
from breaking, obliquely incident, surface-gravity waves is for simplicity alongshore
directed and does not vary in the alongshore direction. The bottom stress terms
(e.g. νv/h) are an idealized representation of the bulk effects of bottom stress in the
surf zone. This representation has the advantage that it is simple analytically, and
has been used in the linear stability problem (Dodd et al. 1992; Falques & Iranzo
1994) and by ANH96. Although other bottom stress representations which take
orbital wave velocities into account are probably more realistic in the surf zone (e.g.
Thornton & Guza 1986), the simple bottom stress representation is appropriate for
both numerical-model-based (e.g. ANH96) and theory-based process studies of shear
waves, and allows comparison of the present results to ANH96.

If the alongshore current is steady and independent of y (i.e. v = V (x)), it then
follows from the continuity equation and the boundary condition of no mass flux into
the shoreline (hu = 0 at x = 0) that u vanishes everywhere. The base-state alongshore
current whose stability will be investigated is then given by a balance between forcing
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Figure 1. The coordinate system used: x is the cross-shore coordinate and
y is the alongshore coordinate.

and bottom friction,

V (x) =
Fh

ν
=
Fβx

ν
.

The shallow water equations are non-dimensionalized with the following scalings
(ANH96):

u = Uu′, v = Uv′, x = Lx′, y = Ly′,

t = Tt′ =
L

U
t′, gη = Nη′,

h = hoh
′ = βLx′, F =

Uν

ho
F ′ =

Uν

βL
F ′,

where the primed quantities are non-dimensional. The choice for the length scale L is
typically the distance from the shoreline to the maximum in the alongshore current.
Previous linear stability analyses (e.g. Putrevu & Svendsen 1992) have found that
the ratio of L to the wavelength of the fastest growing wave is O(1). The velocity
scale U chosen is the maximum of the base-state alongshore current V (x). The choice
for the time scale T = L/U is based on the observation (Oltman-Shay et al. 1989;
Dodd et al. 1992) and linear stability result (e.g. Bowen & Holman 1989; Putrevu &
Svendsen 1992) that the shear wave phase speed is 0.5–0.7 of the maximum alongshore
current. Falques & Iranzo (1994) have found that the rigid-lid approximation used
here is excellent for the linear stability problem when the maximum of the Froude
number Fr = V (x)/(gh(x))1/2, is 0.14, and still quite reasonable for values as large
as Frmax = 0.63. The affect of the rigid-lid approximation on finite-amplitude shear
waves was investigated numerically by Özkan & Kirby (1995) whose results were
quantitatively consistent with those of ANH96 with Frmax = 0.154.

Dropping the primes, the resulting non-dimensional equations are

(ux)x + (vx)y = 0, (2.2a)

ut + uux + vuy = −γηx − αu/x, (2.2b)

vt + uvx + vvy = −γηy + α(F − v/x), (2.2c)

where γ = N/U2 is the ratio of pressure forces to nonlinearity, and α = ν/βU is the
ratio of frictional and nonlinear terms, an inverse Reynolds number, analogous to
the parameter Q of ANH96. The non-dimensional base-state alongshore current is
V (x) = xF(x).

Consider a perturbation of u and v about the base-state alongshore current V (x).
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The non-dimensional perturbation equations become

(ux)x + (vx)y = 0,

ut + uux + (v + V )uy = −γηx − αu/x,

vt + u(vx + Vx) + (v + V )vy = −γηy − αv/x.
Taking the curl of the perturbation momentum equations, dividing by the water
depth and substituting the continuity equation yields a perturbation potential vorticity
equation

Dq

Dt
+ uQx =

α

x

[
−
( v
x

)
x

+
(u
x

)
y

]
,

where
D

Dt
=

∂

∂t
+ u

∂

∂x
+ (V + v)

∂

∂y
.

The perturbation potential vorticity is q = ζ/x, the perturbation vorticity is ζ = vx−uy ,
and the background potential vorticity is Q = Vx/x. In terms of the perturbation
transport streamfunction ψ, where ψx = xv and ψy = −xu, the potential vorticity
becomes

q =
1

x2

(
∇2ψ − ψx/x

)
,

and the potential vorticity equation is

D

Dt

[
1

x2
(∇2ψ − ψx/x)

]
− ψy

x
Qx = − α

x3

(
∇2ψ − 2ψx/x

)
. (2.3)

The boundary conditions of no cross-shore mass flux at both the shoreline and far
offshore make ψ constant at x = 0 and ∞. The perturbation is assumed not to induce
any net alongshore transport so ψ is the same constant (set for convenience to ψ = 0)
at x = 0 and ∞. Fully expanded in terms of ψ and multiplied by x2, (2.3) becomes

(∇2ψ − ψx/x)t −
ψy

x

(
∇2ψx − 2∇2ψ/x− ψxx/x+ 3ψx/x

2
)
− xQxψy

+
(
V +

ψx

x

)
(∇2ψy − ψxy/x) = −α

x

(
∇2ψ − 2ψx/x

)
. (2.4)

This equation and the boundary conditions on ψ govern the evolution of shear
instabilities on a planar sloping bottom with a given base-state alongshore current.
Substituting a perturbation expansion of ψ,

ψ = εψ1 + ε2ψ2 + ε3ψ3 + · · · , (2.5)

into (2.4) and collecting terms of O(ε) yields

L[ψ1] = (∇2ψ1 − ψ1x/x)t − xQxψ1y + V (∇2ψ1y − ψ1xy/x) +
α

x

(
∇2ψ1 − 2ψ1x/x

)
= 0. (2.6)

This equation determines the linear stability of the flow. An alongshore propagating
wave solution for ψ1,

ψ1 = φ1(x) exp[ik(y − ct)] + c.c.,

is substituted into (2.6) where k is an alongshore wavenumber and c.c. denotes the
complex conjugate. In general, c is complex. The real part cr is the phase speed and



76 F. Feddersen

is related to the frequency of the wave by ω = kcr . The imaginary part ci is related
to the linear growth rate of the wave as σ = kci. Collecting terms proportional to
exp[ik(y − ct)] yields (Dodd et al. 1992; ANH96)(

V − iα

kx
− c
)

(φ1xx − φ1x/x− k2φ1) = xQxφ1 −
iα

kx2
φ1x (2.7)

with boundary conditions φ1(0) = φ1(∞) = 0. For a particular paired value of k and
α, an infinite set of paired eigenvalues c and eigenfunctions φ1(x) are solutions of
(2.7). To proceed with the weakly nonlinear analysis, the critical α = αc is sought
such that there is only one wavenumber, k = kc, for which a single eigenvalue
is purely real, while all others have negative imaginary parts. At all other wave-
numbers the solutions decay (ci < 0). At (αc, kc), φ1(x) represents the single neutral
mode corresponding to the critical eigenvalue. A dispersion relation is defined at
αc:

ωc(k) + iσc(k) = kc, (2.8)

where c is the critical eigenvalue. A few properties of this dispersion relation are

σc(kc) = 0,
∂ωc(kc)

∂k
= cg,

∂σc(kc)

∂k
= 0, (2.9)

where cg is the group velocity. After finding αc and kc, the finite-amplitude shear
wave behaviour for small values of ε is found by setting α = αc(1 − ε2) so that the
perturbation grows slowly. The evolution of the instability is determined at O(ε2) and
O(ε3).

At O(ε2), the following scalings are introduced (Stewartson & Stuart 1971; Craik
1985):

τ = ε2t, Y = ε(y − cgt), (2.10)

where τ is a slow time, and Y is a stretched alongshore coordinate moving with the
group velocity, cg . The differential operators for time and the alongshore coordinate
are replaced by

∂t → ∂t − εcg∂Y + ε2∂τ, ∂y → ∂y + ε∂Y . (2.11)

Again the perturbation streamfunction ψ is expanded in powers of ε (2.5), and ψ1,
ψ2, and ψ3 have the following forms:

ψ1 = A(τ, Y )φ1(x) exp[ikc(y − ct)] + c.c., (2.12)

ψ2 = AA∗φ
(0)
2 (x)+AY φ

(1)
2 (x) exp(ikc(y−ct))+A2φ

(2)
2 (x) exp[2ikc(y−ct)]+c.c., (2.13)

ψ3 = |A|2Aφ(1)
3 (x) exp[ikc(y − ct)] + c.c.+ · · · , (2.14)

where kc is the critical wavenumber, c is the phase speed of the neutral wave at (αc,
kc), and A(τ, Y ) is the amplitude of the shear wave which may have slow variations in
the alongshore direction and in time. The term proportional to φ(0)

2 (x) represents the

correction to the mean transport, and that proportional to φ(2)
2 (x) the forced harmonic

at twice the primary frequency (second harmonic).
Applying the scalings for time and alongshore coordinate (2.11) to the full per-

turbation equation (2.4) with α = αc(1 − ε2) and collecting terms of O(ε) and O(ε2)
gives

Lc[ψ1] = 0,
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and

Lc[ψ2] =
ψ1y

x

(
∇2ψ1x − 2∇2ψ1/x− ψ1xx/x+ 3ψ1x/x

2
)

−ψ1x

x

(
∇2ψ1y − ψ1xy/x

)
+ cg(∇2ψ1 − ψ1x/x)Y

−V (ψ1xx + 3ψ1yy − ψ1x/x)Y + xQxψ1Y − 2ψ1yY t −
2αc
x
ψ1yY , (2.15)

where the linear operator Lc[ψ] is the operator L[ψ] defined in (2.6) with α = αc.
Substituting (2.12) for ψ1 and (2.13) for ψ2 into (2.15) and collecting terms proportional
to AA∗ yields

L0[φ
(0)
2 ] =

αc

x

(
φ

(0)
2xx −

2φ(0)
2x

x

)
=

ikc
x

(
φ1φ

∗
1xxx − φ1xxxφ

∗
1 + φ1xφ

∗
1xx − φ1xxφ

∗
1x

)
+

3ikc
x2

(
φ1xxφ

∗
1 − φ1φ

∗
1xx

)
+

3ikc
x3

(
φ1φ

∗
1x − φ1xφ

∗
1

)
(2.16)

with the boundary conditions φ(0)
2 = 0 at x = 0 and x = ∞. The linear operator L0 is

Ln (with n = 0), where

Ln[φ] = inkc

(
V − iαc

nkcx
− c
)

(φxx − φx/x− (nkc)
2φ)− inkcxQxφ−

αc

x2
φx (2.17)

and n is an integer. The O(ε2) terms proportional to AY exp[ikc(y − ct)] give

L1[φ
(1)
2 ] = cg(φ1xx − φ1x/x− k2

cφ1)− V (φ1xx − φ1x/x− 3k2
cφ1)

+

(
xQx − 2k2

c c−
2αcikc
x

)
φ1. (2.18)

In general, φ(1)
2 is resonantly forced since the homogeneous problem, L1[ϕ] = 0, is

satisfied with the stated choice of αc, kc, and c. The solvability condition for φ(1)
2

requires that cg satisfy

cg

∫ ∞
0

φ
†
1(φ1xx − φ1x/x− k2

cφ1)dx =

∫ ∞
0

φ
†
1V (φ1xx − φ1x/x− 3k2

cφ1)dx

−
∫ ∞

0

φ
†
1

(
xQx − 2k2

c c−
2αcikc
x

)
φ1dx, (2.19)

where φ†1(x) is the adjoint function of φ1(x) and is defined in Appendix A. The cg
found by (2.19) should be equal to that found from the dispersion relationship (2.9),
providing a useful check of both the algebra and the numerical computations. With
cg (2.18) can be solved for φ(1)

2 subject to boundary conditions φ(1)
2 (x) = 0 at x = 0

and x = ∞. The O(ε2) terms proportional to A2 exp[2ikc(y − ct)] are

L2[φ
(2)
2 ] =

ikc
x

(φ1φxxx − φ1xφ1xx) +
ikc
x2

(
−3φ1φ1xx + 2k2

cφ
2
1 + φ2

1x

)
+

3ikc
x3

(φ1φ1x) ,

(2.20)

where L2 is the operator Ln in (2.17) with n = 2. With the boundary conditions,
φ

(2)
2 = 0 at x = 0 and x = ∞, (2.18) can be solved for φ(2)

2 (x).
The equation for the amplitude A(τ, Y ) of the instability is determined from O(ε3)
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terms in (2.4) with α = αc(1− ε2),

L[ψ3] = −
(
∇2ψ1 −

ψ1x

x

)
τ

+
αc

x

(
∇2ψ1 −

2ψ1x

x

)
− αc

x
(ψ1Y Y + 2ψ2yY )

−(ψ1Y Y t + 2ψ2yY t) + xQxψ2Y + cg

(
2ψ1yY Y + ψ2xxY + ψ2yyY −

ψ2xY

x

)
−V

(
3ψ1yY Y + ψ2xxY + 3ψ2yyY −

ψ2xY

x

)
+
ψ1y

x

(
∇2ψ2x −

3ψ2xx

x
− 2ψ2yy

x
+

3ψ2x

x2

)
+
ψ2y

x

(
∇2ψ1x −

3ψ1xx

x
− 2ψ1yy

x
+

3ψ1x

x2

)
+
ψ1Y

x

(
∇2ψ1x −

3ψ1xx

x
− 2ψ1yy

x
+

3ψ1x

x2

)
+
ψ1y

x

(
2ψ1xyY −

4ψ1yY

x

)
− ψ2x

x

(
∇2ψ1y −

ψ1xy

x

)
−ψ1x

x

(
∇2ψ2y −

ψ2xy

x

)
− ψ1x

x

(
ψ1xxY + 3ψ1yyY −

ψ1xY

x

)
. (2.21)

The equation for A(τ, Y ) is derived by substituting (2.12) for ψ1 and (2.13) for ψ2,
and invoking the solvability condition for ψ3. The terms on the right-hand side of
(2.21) proportional to exp[ikc(y − ct)] are multiplied by the adjoint function φ

†
1 and

integrated in the cross-shore direction. The left-hand side is identically zero (A 1) and
setting the right-hand side to zero yields a complex Ginzburg–Landau equation for
the amplitude of the instability

Aτ = σA+ δAY Y + µ|A|2A, (2.22)

where σ is the growth rate of the disturbance, δ is a dispersion term, and µ is the
Landau coefficient which can limit the growth of the disturbance. These coefficients
are all complex in general. First κ, which is given by the terms proportional to
Aτ exp[ikc(y − ct)] on the right-hand side of (2.21), is defined

κ =

∫ ∞
0

φ
†
1(φ1xx − φ1x/x− k2

cφ1) dx. (2.23)

The growth rate is given by the terms proportional to A exp[ikc(y − ct)] on the
right-hand side of (2.21),

σ · κ =

∫ ∞
0

φ
†
1

αc

x

(
φ1xx − 2φ1x/x− k2

cφ1

)
dx. (2.24)

The terms proportional to AY Y exp[ikc(y− ct)] on the right-hand side of (2.21) define
δ,

δ · κ =

∫ ∞
0

φ
†
1Sdx, (2.25)

where

S =
(
−αc
x

+ ikc(c+ 2cg − 3V )
)
φ1 +

(
xQx − 2ikc

αc

x
− k2

c (2c+ cg − 3V )
)
φ

(1)
2

+
V − cg
x

φ
(1)
2x + (cg − V )φ(1)

2xx.



Weakly nonlinear shear waves 79

The terms on the right-hand side of the O(ε3) equation that are proportional to
|A|2A exp[ikc(y − ct)] define the complex Landau constant µ,

µ · κ =

∫ ∞
0

φ
†
1Tdx, (2.26)

where

T =
ikc
x

[
2φ1φ

(0)
2xxx − φ∗1φ

(2)
2xxx − 2φ∗1xφ

(2)
2xx + 2φ∗xxxφ

(2)
2 − 2φ1xxφ

(0)
2x + φ∗1xxφ

(2)
2x

+k2
c (3φ

∗
1φ

(2)
2x + 6φ∗1xφ

(2)
2 + 2φ1φ

(0)
2x )
]

+
ikc
x2

(
−6φ1φ

(0)
2xx + 3φ∗1φ

(2)
2xx + φ∗1xφ

(2)
2x − 6φ∗1xxφ

(2)
2 + 2φ1xφ

(0)
2x − 4k2

cφ
∗
1φ

(2)
2

)
+

ikc
x3

(
6φ1φ

(0)
2x − 3φ∗1φ

(2)
2x + 6φ∗1xφ

(2)
2

)
.

The complex Ginzburg–Landau equation (2.22) can exhibit a rich behaviour of
solutions depending on the values of its coefficients (Manneville 1990). When the real
part of the Landau coefficient is negative, finite-amplitude solutions can be found of
the form

A(τ, Y ) = B exp[i(ΛY − Ωτ)], (2.27)

where B is a complex constant. The simplest solution is when Λ = 0, and

|B|2 = −Re(σ)

Re(µ)
, (2.28)

Ω = −
[
Im(σ) + |B|2Im(µ)

]
. (2.29)

This solution is side-band stable (Benjamin & Feir 1967; Stuart & DiPrima 1978) if

Im(µ)Im(δ)

Re(µ)Re(δ)
+ 1 > 0. (2.30)

3. Calculations for ANH96 base-state conditions
The beach slope (β = 0.05) and forcing of ANH96 will be used for the weakly

nonlinear calculations. The ANH96 base-state dimensional alongshore velocity is

V (x) = Cox
2 exp

(
−x

3

δ3

)
, (3.1)

where

Co = 2.404 609 9× 10−4 1

m× s
, δ = 103.02 m

so that the maximum in V is 1 m s−1 and occurs at x = 90 m. Therefore the chosen
velocity scale is U = 1 m s−1. The length scale becomes L = 90 m. The ratio
L3/δ3 = 2/3, and the time scale is T = 90 s. The inverse Reynolds number for these
scaling choices is α = 20ν. The maximum Froude number is Frmax = 0.154, close to
the value of 0.14 found to satisfy the rigid-lid approximation for the linear stability
problem (Falques & Iranzo 1994). The non-dimensional base-state alongshore velocity
V (x) and potential vorticity Q(x) become

V (x) = Vox
2 exp

(
−2x3/3

)
, Vo =

CoL
2

U
= exp(2/3), (3.2a)
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Figure 2. The base-state non-dimensional alongshore current V (x) (3.2a) and potential
vorticity Q(x) (3.2b).

Q(x) = 2Vo(1− x3) exp
(
−2x3/3

)
, (3.2b)

and are shown in figure 2. The potential vorticity has a minimum, which satisfies the
Rayleigh condition for inviscid instability.

ANH96 used a dimensional domain extending from x = 0 to x = 1000 m and
from y = 0 to y = 450 m, corresponding to a non-dimensional domain extending to
x = 11.111 and y = 5. Because the solution is expected to decay exponentially offshore
(Appendix B) a smaller non-dimensional domain extending to x = 7.5 is used here. A
second-order finite difference scheme is used with N−1 grid points so δx = 7.5/N. In
order to accurately do the weakly nonlinear analysis, αc, kc, c, and the eigenfunctions
must be precisely known. Therefore, c and φ1 are extrapolated from calculations in
extended precision (32 significant digits) on grids with N − 1, 2N − 1, and 4N − 1
points, giving an accuracy of O(δx6). To find αc and the dispersion relationship, (2.7)
was solved on the three grids using N = 2500 (δx = 0.003) by inverse iteration,
which is highly efficient for large tridiagonal systems (Golub & Van Loan 1996).
From the solutions on the three grids, c and φ1 are extrapolated giving errors of
O(δx6) = 10−16. A search was performed in (α, k) space to find the pair of values
(αc,kc) where one eigenvalue has a zero imaginary component, and all the others have
negative imaginary components. For the given beach slope and background velocity,
the critical values are αc = 0.201 189 612 42 and kc = 1.363 262 549 16. The eigenvalue
spectrum is shown in figure 3(a). The critical eigenvalue is well separated from the
other eigenvalues (figure 3b). The adjoint eigenvalue spectrum at αc and kc from
(A 2) is calculated in the same manner and, as expected, is identical to the eigenvalue
spectrum of (2.7). The numerical value of the maximum non-dimensional growth rate
at αc is very close to zero (σc(kc) = kcci = 2× 10−11, corresponding to a dimensional
growth time scale of 105 years). The points on the dispersion relation (2.8) near kc are
well fitted by a parabola (figure 4, the coefficients of the parabola are given in table 1)
indicating that a Taylor series expansion of the dispersion relationship near kc is
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kc = 1.363 262 549, and (b) the spectrum enlarged to show the region −0.030 < ci < 0.005.
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Figure 4. The critical dispersion curve for ωc(k) + iσc(k) = kc near the critical wavenumber k. The
circles represent calculated values. The solid lines are the best-fit parabolas from the coefficients of
table 1.

valid. Based on the coefficients in table 1, the phase speed at the critical wavenumber
is c = 0.617 753 649 7 and by (2.9) the group velocity is cg = 0.490 600 164 4.

Once the critical frictional parameter and wavenumber are known, φ1 is calculated
from (2.7) using αc and kc with the same numerical scheme on much denser grids where
N = 10 000 (δx = 7.5 × 10−4). Denser grids are used because third derivatives must
be accurately calculated to find the coefficients of the complex Ginzburg–Landau
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a2 a1 a0

ω(k) 0.012 869 479 738 04 0.490 600 164 421 66 0.842 160 415 251 88
σ(k) −0.088 322 793 143 48 0 1.893 23× 10−11

Table 1. The quadratic coefficients for the growth rate and frequency,
ωc(k) + iσc(k) = a2(k − kc)2 + a1(k − kc) + a0 where kc = 1.363 262 549 16.

σ 0.123 746− i0.014 047
δ 0.088 330 + i0.012 854
µ −321.730 54 + i407.930 56
|B| 0.0196 11
Ω −0.1428 53

Table 2. Coefficients for the complex Ginzburg–Landau equation and solution values.

equation. The real and imaginary parts of the normalized and extrapolated φ1 are
shown in figure 5(a). The adjoint function φ†1, shown in figure 5(b), is calculated in a
similar manner. The group velocity cg calculated from (2.19), where the derivatives of
φ1 and the integrals are extrapolated, yields a value of cg = 0.490 600 157 2− 0.35×
10−8i. This agrees with the value from the dispersion relationship (2.9) to 10−8 in both
the real and imaginary parts, serving as a check of the numerical computations. The
functions φ(0)

2 and φ
(2)
2 (figure 5c and figure 5e) are calculated from (2.16) and (2.20)

on grids identical to those used for φ1 with a standard tridiagonal matrix solver,
and extrapolated. The function φ

(1)
2 is found by solving (2.18) with a singular value

decomposition of the L1 matrix with N = 999 grid points. There is one well-isolated
zero (10−13) singular value, and the forward and adjoint null vectors of the L1 matrix
are proportional to φ1 and φ

†
1. The solution for φ(1)

2 (figure 5d) is constructed by

suppressing the homogeneous solution to L1. The derivatives of φ1, φ
(0)
2 , φ(1)

2 , φ(2)
2

and the integrals in (2.23), (2.24), (2.26) are extrapolated to derive the coefficients
of the complex Ginzburg–Landau equation (2.22), summarized in table 2. The value
of δ can also be calculated (Stewartson & Stuart 1971) from the linear dispersion
relationship (figure 4 and the dispersion relation coefficients in table 1) by

δ = −1

2

∂2σc

∂k2
+ i

1

2

∂2ωc

∂k2
. (3.3)

These two estimates of δ agree to three significant digits. The accuracy of the
agreement between the two is much smaller than that between the two estimates of
cg (from (2.9) and (2.19)), because δ is calculated from (2.25) where φ(1)

2 (x) is found
on a much coarser grid than for example φ1(x).

The real part of the Landau coefficient is negative so in this case the instability
is supercritical, and finite-amplitude equilibration is possible. A solution for the
amplitude of the shear wave is sought that has the form (2.27) with Λ = 0. The values
of B (2.28) and Ω (2.29) are given in table 2. The values of µ and δ are such that
this solution for A(τ, Y ) is side-band stable (2.30) for the stated choice of beach slope
and base-state alongshore current. For other choices of beach slope and base-state
alongshore currents, the instability could be either subcritical or side-band unstable.
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4. Analytic and numerical model comparison
Due to numerical limitations, the near critical behaviour of the ANH96 model may

be distorted. Therefore, analytic and ANH96 numerical results will be compared for
the same non-dimensional beach profile (h = x) and base-state alongshore current
(3.2a) at two values of α = 0.18 and 0.17. There are differences between the two
models. The ANH96 model is a second-order finite-difference model of essentially
the equations (2.1), but also includes weak biharmonic friction (−ν∗∇4u and −ν∗∇4v
added to the right-hand side of (2.1b) and (2.1c)) to suppress numerical instabilities.
Boundary conditions of no flow into the shoreline and offshore boundary are used.
Additional boundary conditions (uxx = vx = vxxx = 0) are required at the shoreline
and offshore boundary in the ANH96 model due to the fourth-order derivatives
in the biharmonic friction terms. The finite-difference representation for biharmonic
friction and the associated boundary conditions may influence the development of
the instability. ANH96 use a numerical resolution with N = 200 grid points in x,
M = 90 points in y, and a non-dimensional grid spacing δx = δy = 0.044. The
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Figure 6. (a) The ANH96 model peak amplitude at the primary frequency at x = 1 versus ε for
α = 0.18 (∗) and α = 0.17 (◦). The inferred αc = 0.185 64. (b) The amplitude of the second harmonic
versus ε2. The inferred αc = 0.187 41.

finite numerical resolution of ANH96 may also mask the near critical behaviour (e.g.
Hyman et al. 1986).

Periodic boundary conditions are used in the alongshore direction, and the along-
shore domain is slightly longer than the wavelength of the theoretical critical wave,
leading to a smaller wavenumber (k = 1.2566 vs. kc = 1.3632) for the ANH96 critical
wave. Therefore the most unstable wave cannot grow, and an evolution of the insta-
bility to smaller wavenumbers is restricted. ANH96 also ran numerical experiments
with an alongshore domain three times the wavelength of the most unstable mode
and stronger nonlinearity (α 6 0.12 corresponding to ε > 0.6), and reported a shift
toward lower frequencies and wavenumbers as the instability evolved. For α = 0.15
(ε ≈ 0.45), more strongly nonlinear than the values of α investigated here, steady
equilibrated waves with the same frequencies and wavenumber as the experiments
with the smaller domains were reported (figure 7 of ANH96). However, even on
the extended alongshore domain, a potential side-band instability of the shear wave
is still suppressed. Due to these limitations of the ANH96 model, the near critical
behaviour of shear waves may be modelled incorrectly, and for these reasons, the αc
and hence ε for the ANH96 model are not accurately known.

Before comparing the results of the ANH96 model with the analytic model, it
is first verified that the ANH96 model at αc = 0.17 and αc = 0.18 is in a weakly
nonlinear regime. For weakly nonlinear waves, the amplitude at the primary frequency
a1 depends linearly on ε and the amplitude at the second harmonic a2 depends on
ε2. Both amplitudes should vanish when ε = 0. The αc is found so that the line going
through the (ε,a1) and (ε2,a2) points have zero y-intercept (figure 6). The resulting
estimates of αc are quite similar, αc = 0.185 64 from the primary frequency and
αc = 0.18741 from the second harmonic, confirming the ANH96 model is in a weakly
nonlinear regime. Using αc = 0.185 64, ε = 0.174 for α = 0.18 and ε = 0.290 for
α = 0.17.

The choice of αc feeds back into all parts of the solution to the weakly nonlinear
problem, so it is not possible to use the ANH96-derived αc to compare results from
the ANH96 and analytic models. Therefore, the analytic αc = 0.20119 is used to
calculate ε for comparison purposes, resulting in ε = 0.325 for α = 0.18 and ε = 0.394
for α = 0.17. As will be shown, this leads to reasonable agreement between analytic
and ANH96 model amplitudes for the shear waves, and very good agreement for the
cross-shore structure of the shear waves.

The spectrum of ANH96 cross-shore velocity at both values of α contains distinct
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Figure 7. Non-dimensional spectra of u at x = 1 from ANH96 model with α = 0.17 (grey line)
and 0.18 (bold line).

peaks at integer multiples of the primary frequency (figure 7). The primary peak in
the spectrum at the weakest nonlinearity (α = 0.18) has a dimensional period of 12
minutes. The ANH96 model non-dimensional primary frequency ω1 = 0.7822 is close
to the analytical model value ω = 0.8421 at αc and kc from linear stability theory
(2.7). The difference in frequencies is largely attributable to the ANH96 alongshore
domain being slightly longer than the critical wavelength. From (2.7), the smaller
wavenumber forced by the domain size corresponds to a frequency ω = 0.7899, close
to the ANH96 primary frequency ω1 = 0.7822.

The shift to lower frequency in the spectral peaks with decreasing α (figure 7)
is consistent with amplitude dispersion. The equilibrated cross-shore velocity at the
primary frequency and at a fixed alongshore position is

u =
−εik
x

(
Bφ1(x)e−i(ωc+ε

2Ω)t − B∗φ∗1(x)ei(ωc+ε
2Ω)t
)

(4.1)

indicating a finite-amplitude shift of ε2Ω in the primary frequency, where Ω is given
by (2.29). At the nth harmonic (e.g. nω1) the leading-order frequency shift is given by
nε2Ω. Therefore the difference in spectral peak frequencies at α = 0.18 and α = 0.17
is theoretically n∆ε2Ω, where ∆ε2 = (0.18− 0.17)/αc. The ANH96 observed frequency
shift for the first four harmonics at the nth harmonic is n times the primary frequency
shift (figure 8), consistent with O(ε2) amplitude dispersion. However, the magnitude
of the ANH96 observed frequency shift is about 30% larger than the analytical model
frequency shift.

The equilibrated cross-shore velocity of the ANH96 model at a fixed alongshore
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Figure 8. The ANH96-derived versus the theoretical change in peak frequency between α = 0.18
and α = 0.17. Results for the primary frequency (∗), second (◦), third (�), and fourth (4) harmonic
are shown with αc = 0.201 19. The error bars (±0.003) indicate the frequency resolution of the
spectrum. The solid line represents perfect ANH96 model–theory agreement. The dashed line is the
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position is

u(x, t) = U1(x)eiω1t +U2(x)ei2ω1t + c.c.+ · · · , (4.2)

where ω1 is the primary wave frequency, and U1(x) and U2(x) are the Fourier
transforms of the ANH96 cross-shore velocities at ω1 and 2ω1. U1(x) and U2(x) are
related to the analytic model by

U1(x) =
−εB∗ikφ∗1(x)

x
U2(x) =

−ε2B∗22ikφ(2)∗
2 (x)

x
. (4.3a,b)

The functions φ1(x) and φ
(2)
2 (x) can therefore be inferred from the ANH96 cross-

shore velocity for α = 0.18 and α = 0.17. The magnitudes of |φ1(x)| and |φ(2)
2 (x)| are

equal to the square root of the spectrum of u (e.g. figure 7) summed over a small
window of frequencies centred on the primary or secondary frequency (to account for
spectral leakage) and multiplied by x/(ε|B|k) or x/(2ε2|B|2k) respectively. The phases

of φ1(x) and φ(2)
2 (x) are given within arbitrary constants from the phases of U1(x) or

U2(x).

Analytic and ANH96 model solutions for φ1(x) and for φ
(2)
2 (x) are shown in

figures 9 and 10. The magnitudes of the ANH96-derived φ1(x) are in approximate
agreement with theory (figure 9a) using the ε derived from the analytic αc. However,
when normalized to the same maximum magnitude, the cross-shore structure of both
the ANH96-inferred and theoretical |φ1(x)| and |φ(2)

2 (x)| are in very good agreement
for both values of α (figures 9b and 10a). The cross-shore phase structure is also in
excellent agreement (figure 9c and figure 10b), except near the shoreline where the
differences are evidently due to the additional boundary conditions applied to the
ANH96 model at the shoreline and the resulting boundary layer from the biharmonic
friction. Far offshore (x > 4), the phase for φ(2)

2 (x) is in error because the signal is so
weak.
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Figure 9. (a) |φ1(x)| versus non-dimensional cross-shore coordinate, x. (b) |φ1(x)| normalized (to a
maximum magnitude of 1.0) versus x. (c) The phase of φ1(x) versus x. In each panel, theory is a
solid line, and ANH96 model φ1(x) are inferred with αc = 0.20119, and are shown with α = 0.18
(dash-dot) and α = 0.17 (dashed). The phases are offset so that they are equal at x = 0.582.

The analytic model predicts a mean second-order correction Vc(x) to the alongshore
current

Vc(x) =
ε2|B|2φ(0)

2x

x
. (4.4)

The ANH96 correction, defined as the difference between the time mean from the
base-state alongshore current v(x)−V (x), was calculated for both α. The ε2-normalized
theoretical correction to the alongshore current, Vc/ε

2 = |B|2φ(0)
2x/x, and the ANH96

correction (v − V )/ε2 normalized to the same magnitude are also in very good
agreement (figure 11). The differences in the correction near the shoreline are again
due to the additional boundary conditions applied there. The effect of the mean flow
correction is to reduce the offshore velocity shear by decreasing the velocity at the
maximum near x = 1 and increasing the velocity further offshore.
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5. Discussion and conclusions
Weakly nonlinear shear waves are shown to have characteristics of many other

weakly nonlinear wave systems. A standard perturbation expansion is used where
the small parameter ε is the normalized departure of an inverse Reynolds number
α from neutral stability. At O(ε) there is a primary wave with wavenumber kc,
frequency ωc, and cross-shore structure φ1(x) predicted from linear stability theory
(e.g. Bowen & Holman 1989; Dodd et al. 1992). At O(ε2), a forced wave at twice
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the frequency and wavenumber (2ωc, 2kc) (second harmonic) and a correction to
the mean alongshore current are found. At O(ε3), a complex Ginzburg–Landau
equation (2.22) is derived for the amplitude of the shear wave. This derivation is
applicable to an alongshore homogeneous planar beach with arbitrary slope and
any prescribed alongshore forcing or base-state alongshore current. For the same
base-state alongshore current (3.2a) and beach slope used in the numerical study
of ANH96, the instability is supercritical, and the analytic solution is a side-band
stable equilibrated shear wave, with an amplitude-dependent dispersion relationship.
Previous work (Dodd et al. 1992; Putrevu & Svendsen 1992; Slinn et al. 1998) suggests
that the shear instability is enhanced by a barred-beach profile. The weakly nonlinear
analysis can be in principal extended to non-planar beach profiles; however, the
character of the instability may be different from the case presented here.

The near critical behaviour of shear waves in the ANH96 model may be distorted by
numerical effects. Biharmonic friction terms added to prevent numerical instabilities
and finite model resolution may alter the character of the instability. Waves longer
than the primary wavenumber are suppressed due to finite domain lengths, therefore
a potential sideband instability cannot develop. Numerical limitations also complicate
comparison of the analytic to the ANH96 numerical model. However, the ANH96
model at α = 0.17 and α = 0.18 is shown to be in a weakly nonlinear regime, and the
dominant variability is an equilibrated shear wave with the frequency, wavenumber,
and cross-shore structure predicted by linear stability theory. The variability at twice
the primary frequency is the second harmonic with the same cross-shore structure as
the analytical model. The cross-shore structure of the correction to the mean flow is
also in good agreement. Using the analytic αc, the ANH96 and analytic model shear
wave amplitudes are in reasonable agreement, as is the amplitude dispersion. The
agreement with the analytical model and ANH96 confirms that the ANH96 model
correctly reproduces the qualitative behaviour of the weakly nonlinear shear waves
for this choice of beach slope and base-state alongshore current.

The numerical modelling of ANH96 and Slinn et al. (1998), and the observational
work of Dodd et al. (1992) suggest a wide range of possible shear wave environ-
ments in natural surf zones, ranging from linearly stable equilibrated shear waves, to
strongly turbulent eddy-dominated regimes. Determining whether weakly nonlinear
shear waves exist in natural surf zones is beyond the scope of this study. However, the
ANH96 base-state alongshore current (3.1) and beach slope (β = 0.05) from §3 are
not completely unrealistic parameters for a natural surf zone. With these parameters,
the critical inverse Reynolds number αc = 0.201 19 leads to a dimensional critical
drag coefficient of νc = 0.01 m s−1. In the idealized bottom stress representation used
here, ν can be thought to represent ν = cfσu where cf is an empirical drag coefficient
and σ2

u is the orbital wave velocity variance (Dodd et al. 1992; Slinn et al. 1998).
Using a cited range of cf in the surf zone from 0.01 to 0.001 (e.g. Garcez Faria et al.
1998) and a significant wave height Hsig = 1 m in 2 m water depth with linear surface
gravity wave theory which gives σu ≈ 0.8 m s−1, yields a plausible range of ν from
0.008 to 0.0008 m s−1. Given the caveats that the bottom stress representations is
crude and the forcing idealized, it appears that the value of νc = 0.01 m s−1 required
for stability in this hypothetical case is not entirely unrealistic for natural surf zones,
and also suggests that a natural surf zone could possibly be in a linearly stable or in
a weakly nonlinear regime.

Shear wave energy in field data (e.g. Oltman-Shay et al. 1989; Dodd et al. 1992),
appears as an approximately dispersionless band in frequency–wavenumber spectra.
Beyond this, little is known about the characteristics of shear waves in natural surf
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zones. Future analyses and observations may better characterize surf zone shear wave
environments. If shear waves are weakly nonlinear equilibrated linear modes, this
might be elucidated with bispectral analysis (e.g. Elgar & Guza 1985) because in the
weakly nonlinear limit, the wave at 2ω and 2k is bound to the primary wave at ω
and k. Future theoretical and observational study could include investigating possible
resonances between modes, either leading to explosive instabilities (Shrira et al. 1997)
or a coupled set of amplitude equations.

Funding for this study was provided by ONR Coastal Sciences and AASert pro-
grams, and California Sea Grant. The author appreciates the help of by John Allen
and Priscilla Newberger in providing ouput from their model. Glenn Ierley and Bob
Guza provided sage advice on many occasions, and Paola Cessi taught the class that
inspired this work.

Appendix A. The adjoint operator

The adjoint operator, L†1 and the adjoint function φ†1 to the linear operator L1 are
defined as ∫ ∞

0

φ
†
1L1[φ1]dx =

∫ ∞
0

φ1L
†
1[φ

†
1]dx = 0 (A 1)

with L1[φ1] given by (2.17) with n = 1 and and the boundary conditions, φ1 = 0 at
x = 0 and x = ∞. Integrating by parts yields

L†[φ†1] =

(
V − iαc

kcx
− c
)
φ
†
1xx +

(
2Vx +

V

x
− c

x

)
φ
†
1x −

(
xQx −

iαc
kcx

(
k2
c +

2

x2

)
+V

(
k2
c +

1

x2

)
− Vx

x
− Vxx − c

(
k2
c +

1

x2

))
φ
†
1 = 0, (A 2)

with the boundary conditions φ†1 = 0 at x = 0 and ∞. The adjoint φ†1 is solved at the
critical wavenumber, kc and critical friction parameter, αc. The adjoint operator L†

must and does have the same eigenvalue spectrum as the linear operator L1.

Appendix B. Asymptotics
The asymptotic nature of the linear eigenvalue problem near the beach (x = 0)

is examined where the dimensional water depth, h → 0. The solution of the linear
eigenvalue problem should be analytic near the shoreline and match the prescribed
boundary condition, φ1 = 0. The non-dimensional velocity used by ANH96 (3.2a)
and resulting potential vorticity gradient are expanded around x = 0. The stability
equation (2.7) is rewritten as

φ1xx −
φ1x

x
− k2φ1 =

(
Qox

3φ1 − iα
kx2φ1x

)(
Vox

2 − c+ iα
kx

)
(
Vox

2 − c− iα

kx

)(
Vox

2 − c+
iα

kx

)
= λ1(x)φ1 + iλ2(x)φ1x + φ1x/x,

where λ1(x) and λ2(x) are analytic functions near x = 0. The origin is a regular
singular point. Expanding in a Frobenius series, the indicial exponents are 0 and
3. The latter gives a non-singular solution that satisfies the boundary condition,
φ1(0) = 0.

The asymptotic behaviour as x → ∞ is also of interest because the solution for
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φ1 should match the boundary condition of φ1(∞) = 0, in checking the numerical
solution for φ1 and helping to choose the proper numerical domain. As x→∞, terms
that are proportional to V and Qx can be ignored since both have leading-order
behaviour exp(−2x3/3). The equation becomes(

c+
iα

kx

)
φ1xx −

(
c+

2iα

kx

)
φ1x

x
−
(
c+

iα

kx

)
k2φ1 = 0,

which has an irregular singular point at x = ∞. Substituting φ1 = eS(x), standard
asymptotic methods are used to determine that to leading order S ∼ −kx + 1/2 ln x
thus

φ1 ∼ x1/2 exp(−kx).

Note that this leading order result is independent of both the eigenvalue c and α.
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